
FNEX 3.0:
The Winter Upgrade

FNEXSpectrum

FNESetup
Creates event ‘vectors’ that

comprise basis of
There are many of these;

one for each combination of
FD/ND + MC TYPE / DATA

FNEXSpectrumCorrector

Full set of all FNEXSpectrum
objects sent to Makes ‘corrected’ spectrum,

normalized to same (input)
POT, with extrapolation

corrections etc.;
concatenates all MC

sources into single AllMC
distributions

FNEXFit

Sent to constructor of object

Holds a set of shifts and oscillation parameters; applies them to the
FNEXSpectrumCorrector, which in turn passes it down the chain;
makes all relevant plots, and generates a data/mc comparison ‘fit’
quantifier (eg chisq) that can be accessed via FitFunction_Eval()

Keeps record of last set of
shifts / oscillation

parameters applied; used to
determine whether plots

need to be remade after an
update

Holds all final plots; can be
printed to file to show what a

fit looks like

FNEXBestFit

Sent in as ‘initial guess’ to

Tweaks input FNEXFit to
minimize FitFunction_Eval()

value

ConfidenceGenerator

Used by

To make map fit chi2 space,
make CL contours, etc.

Applies new shifts by
recalling

FNEX 2.0

Prefers one variable (target)
over others

Which kind / subset of
results generated is based

on .fcl parameters

FNEXUtilities
Holds FNEXShiftables

objects, which are
instructions on applying
shifts / osc params to

FNEXSpectrum objects

FNEXSpectrum

FNEXExperiment_Setup

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXResult (was ConfidenceGenerator)

FNEX 3.0
Defines variables and

spectrum types needed for
an experiment. Used to

setup array of…

Full set of all FNEXSpectrum
objects sent to

Call to reevaluate variables
after shifts/cuts applied

Set of cuts, shifts, and one or more
FNEXCorrectedSpectrum objects. Provides

FitFunction_Eval(), which is an effective data vs
mc fit chisq, as well as final distributions

No one variable preferred
over others

Grabs particular spectra
from FNEXSpectrum array to

generate ‘corrected’
spectrum; DOES prefer one

variable over others, only
reports on that one variable

When cuts/shifts are
applied, determine whether
they are new; what needs to

be changed (if anything).
Prevents unnecessary

reprocessing.

FNEXMultiExperiment :: FNEXExperiment Contains a vector of FNEXExperiment objects; calling
FitFunction_Eval adds together contributions from all elements in

vector; applying Shift A applies that shift to all experiments which are
influenced by that shift — potentially with correlations.

Takes in FNEXMultiExperiment; tweaks free
parameters in FNEXMultiExperiment to minimize

joint FitFunction_Eval() value

Must be generally gridified: a few existing children
(templates), but with opportunity for more to be added

Needs to be abstracted so particular fitters
can be easily swapped in / out

FNEXSpectrum

FNEXExperiment_Setup

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXResult

FNEXMultiExperiment :: FNEXExperiment

FNESpectrumProd_module

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Production/Setup

Experiments/Corrections

Fitting

Results & Grid

FNESpectrumAna_module

(and overall .fcl structure)

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

Summary:
1) Introduce new FNEXVar object that states which other FNEXVars it depends on;

generate list of FNEXVar dependencies; only those ‘compound’ vars that need to be
updated are updated after a change in state.

2) Take responsibility for “should I remake a plot” away from FNEXExperiment (cur:
FNEXFit); give it to individual FNEXSpectrum objects

3) Generalize FNEXSpectrum to treat all variables equally (currently has a ‘target’
variable that it automatically remakes histograms for); generate plots for any
variable on demand, unless that plot has already been made and the state has not
changed (See 2)

4) Move oscillation calculator to FNEXExperiment_Setup object; changes to osc.
params are rerouted to the _Setup() object to act on the calculator there; this lets a
user implement whatever calculator she wants (e.g., one with sterile generations)

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

1) FNEXVar object; holds label and what other FNEXVar it depends on (if
isCompound), as well as standard range / binning for histograms.

2) FNEXExperiment_Setup should create an array of FNEXVar objects with well-
defined order at startup (existing framework uses enumerators for this)

3) GenerateDependencies(): For each FNEXVar object, generates list of pointers /
enumerators describing which other variables will change if its value will change;
store in some std::vector< std::vector< >(# dep) >(#vars) fnexvar_dependencies.

4) FNEXSpectrum holds list of all shifts applied and current osc. param. values

5) FNEXSpectrum: When a shift is applied to a FNEXSpectrum object, modifies list
std::vector< * or enum > vars_to_update by checking
FNEXExperiment_Setup::Dependencies() for that shift (if applicable, see 4)

6) When an osc. param. change is applied to a FNEXSpectrum object, modifies bool
update_osc_weights (if applicable, see 4)

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

7) FNEXSpectrum::UpdateValues() Based on vars_to_update and
update_osc_weights, modify vars and oscillation weights that need updating.

8) FNEXSpectrum::FetchPlot(std::string var_name) If osc weights are updated and
this var does not need to be updated, return existing plots; else generate new plot
of that var’s distribution and return it.

9) FNEXSpectrum::ApplyWeights() : instead of finding weights and filling
histograms as —>Fill(entry, weight), change to only fill a new std::vector< >
weights, one for each event; FetchPlot() will then create plots according to the
weights entries.

10) FNESpectrumProd_module : Based on FNEXExperiment_Setup, generate vector
of FNEXSpectrum objects; fill them appropriately. Save to file.
FNESpectrumAna_module shouldn’t need any major changes in terms of
FNEXSpectrum loading.

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

1) FNEXExperiment_Setup::OscCalc() Returns an osc calculator created within the
Setup instance; allows custom templates using any calculator with any associated
set of parameters

2) FNEXExperiment_Setup::ChangeOscParam(std::string label, float val) How to
modify the calculator based on osc param change. Allows user to associate their
own custom calculators / osc. params with the experiment and describe them in the
.fcl file setups as normal.

3) FNEXSpectrum::ApplyShift() Takes on responsibility for redirecting oscillation
parameter change requests to FNEXExperiment_Setup(), instead of trying to modify
a variable. Then the single FNEXExperiment_Setup::OscCalc() is used to generate
new osc. weights.

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

Wish List Summary:
We currently have a predefined set of FNEXSpectrum objects; one for each major type
of MC and data, for each detector. When we run over a production-level event,
FNESpectrumProd_module determines what type of event it is (numu MC in ND?) and
then assigns it to the appropriate FNEXSpectrum object. This requires defining a new
object whenever we want to start working with different spectra, and running a new set
of ‘prod’ jobs.

1) Abstract FNEXSpectrum object to include a IncludesThisEvent() method (e.g.,
might say to include only MC numu events, or only MC nue on e events).

2) Create set of standard inherited FNEXSpectrum objects; in
FNEXExperiment_Setup, define which FNEXSpectrum objects ought to be used for
this analysis.

3) Prod_module now runs over all events without deciding into what category they
ought to fall; saves them all in one ‘neutral’ FNEXSpectrum object.

4) When an Ana_module job starts up, queries FNEXExperiment_Setup for list of
all FNEXSpectrum to create; makes empty FNEXSpectrum objects, then runs
through ALL saved events to direct them into the appropriate FNEXSpectrum.

FNEXSpectrum

FNEXExperiment_Setup

FNESpectrumProd_module

Production/Setup

1) Wish list: FNEXSpectrum::IsInSpectrum() Determines whether an event belongs
in this FNEXSpectrum object.

2) Wish list: Several inherited FNEXSpectrum objects with different definitions of
IsInSpectrum (e.g., MC numu, or MC nue on e)

3) Wish list: FNEXExperiment_Setup::SelectSpectra() Assigns a subset of all
defined FNEXSpectrum objects to this experiment (e.g., MC numu, or MC nue on e)

4) Wish list: FNESpectrumProd_module: Makes vector of FNEXSpectrum objects via
FNEXExperiment_Setup::SelectSpectra(); replaces hard-coded selection criteria in
Event loop with calls to IsInSpectrum() for each associated FNEXSpectrum object.

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXMultiExperiment :: FNEXExperiment

Experiments/Corrections

Fitting

(and overall .fcl structure)

Summary:
1) FNEXExperiment (migrate to this from FNEXFit): All responsibility for whether a plot

ought to be remade will be moved to the FNEXSpectrum object; can be removed
from FNEXExperiment. Rewrite accesses to FNEXSpectrum in terms of FetchPlots()

2) FNEXCorrectedSpectrum: Holds POT information and correctly normalizes all MC
contributions. Does not remake corrected spectra if a state change has not
occurred (no shifts affecting this spectrum have been applied).

3) FNEXMultiExperiment: Holds highest-level vector of shifts and FitFunction_Eval.
Responsible for determining how to combined FitFunction_Eval for all linked
experiments (e.g., numu and nue), and assigning correlated shifts (e.g., a 1 sigma
HadE shift to the FNEXMultiExperiment might be a 1 sigma HadE shift for the numu
FNEXExperiment, and a 1.3 sigma HadE shift for the nue FNEXExperiment).
FNEXFitter now acts on a FNEXMultiExperiment object, even if there’s only one
experiment in it.

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXMultiExperiment :: FNEXExperiment

Experiments/Corrections

Fitting

1) FNEXExperiment: Currently is responsible for determining what the last set of
applied shifts was, and whether FNEXSpectrum plots need to be remade; should
instead still keep a record (redundancy could be useful here), but otherwise should
simply pass shift/osc. param. information on to the FNEXSpectrum objects, leave
the decision-making on how to apply these shifts up to them.

2) FNEXExperiment: Should also keep a record of all applied shifts / osc. params;
pass that information on to all linked FNEXCorrectedSpectrum objects.

3) FNEXMultiExperiment: Takes in list of FNEXExperiments; hosts list of shifts to be
applied, but applies them to each Experiment according to some correlation matrix
(1 sigma shift in HadE on Numu = 1.5 sigma shift in HadE on Nue, as a fictitious
example)

(and overall .fcl structure)

1) Feed setup through .fcl file: Need some consistent method for defining multiple
FNEXCorrectedSpectrum objects for any given experiment; defining multiple
experiments (each calls a different _Setup file with different cuts, etc.); and defining
the MultiExperiment (with systematic uncertainties) that contains many experiments.

2) Likely takes for of defining a list of CorrectedSpectrum objects; a list of experiments,
each of which references a _Setup file, a set of cuts that it wants to employ, and a
list of CorrectedSpectrum objects to generate; and then a multi-experiment, which
references the ‘attached’ experiments

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXMultiExperiment :: FNEXExperiment

Experiments/Corrections

Fitting

(and overall .fcl structure)

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXMultiExperiment :: FNEXExperiment

Experiments/Corrections

Fitting

Summary:
1) Fits currently done via FNESpectrumBestFit: Want instead an abstract class that

takes in a FNEXExperiment object, and applies a minimization technique using its
list of available shifts, and its FitFunction_Eval() return values.

2) Then need to work on generating the best possible FNEXFitter :: child; perhaps
the best technique is one that uses one minimization technique to select new test
points for osc. param space (which is more featureful and smoothly-changing), and
another that selects new test points for the syst. shifts (which are likely less
featureful, but can cause discontinuous changes in bin content that would make
Migrad unhappy)

3) As always, make sure FNEXFitter::child used per FNEXMultiExperiment is defined in
the .fcl file.

(and overall .fcl structure)

FNEXResult

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Results & Grid

FNESpectrumAna_module

Summary:

1) “Abstractify" FNEXResult (currently ConfidenceGenerator), and create child
classes for all existing result objects (e.g. Gaussian uncertainty CL contours; FC
uncertainty contours; simple best fits; speed tests)

2) “Gridify” FNEXResult : require all jobs to be described in terms of data_point
objects with a finite number of data_points per job (may depend on .fcl inputs);
‘interpreter’ to fill in a data_point based on current point_index (e.g. for 50x50 grid of
points in osc. param. space, point_index ranges from 0-2499, interpreter tells you
which osc. param. vals. to look at for each point in this range.

3) FNEXGridSubmit.sh/FNEXDown.sh: Former is slight modification to existing
fnex_submit_fc_job.sh; latter appraises output of grid jobs to check for failed jobs,
resubmit missing pieces.

FNEXResult

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Results & Grid

FNESpectrumAna_module

1) FNEXResult() : ConfidenceGenerator currently contains separate methods for all
result types; abstract to FNEXResult class, with child methods for each type of
result.

2) FNEXResult takes in a FNEXMultiExperiment object and a ‘starting point’ (more on
that later).

3) Like with any other ART object, it can be Configured based on .fcl file parameters;
there will be a .fcl ‘block’ describing each FNEXResult, designed by the inherited
class’ writer

FNEXResult

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Results & Grid

FNESpectrumAna_module

1) Gridification: basic idea: to make results inherently grid-friendly (a necessity for
Feldman-Cousins jobs and jobs with many systematics), need to make certain that
every job can be broken into a discrete set of ‘points’:

1) struct data_point: contains all info needed for a single data point; input and
output (e.g. some initial guess of osc params, the resulting best fit point, and
related chi2)

2) GeneratePoints(): based on input parameters (from .fcl file) determines how
many distinct points will be needed for the job.

3) PreparePoint(int point_index, data_point & this_point): point_index is a
number from 0 to NumPoints-1. Based on current index, assigns appropriate
values to data_point

Example: 50 x 50 grid in DelMSq and Sin2Theta space = 2500 data points.
PreparePoint() sets data_point.DelMSq = (point_index % 50)/50*(max_val-min_val)
+min val, data_point.Sin2Theta = (floor(point_index / 50)/50*(max_val-min_val)
+min_val

FNEXResult

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Results & Grid

FNESpectrumAna_module

1) Gridification (continued)
1) Run() / SetPointsToRun(): Run() runs over the subset of points sent to

SetPointsToRun(); the latter is set via .fcl parameter.
2) RunPoint(data_point & this_point) Does whatever must be done to the

FNEXMultiExperiment to fill the ‘output’ variables in data_point
3) Save/LoadDataPoints(art::TFileDirectory * tfd)
4) Save/LoadDataPoints(std::string filename)
5) CombinePoints(): this stage combines all data_points loaded / generated by

this instance to create more complicated objects. E.g., if each data_point
represents a chi squared evaluation at some grid location in parameter space,
this function might compare chi squared values to generate CL contours

6) Display(art::TFileDirectory * tfd) Put all final results from CombinePoints()
into a visually pleasing format, save for later consideration.

FNEXResult

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Results & Grid

FNESpectrumAna_module

1) FNEXSpectrumAna_module : Must be modified to correctly parse .fcl file; identify
what FNEXResult objects are needed; construct these objects; send configuration
for each FNEXResult object to the appropriate object; run the object.

2) FNEXGridSubmit.sh : generalization of submit_c_to_grid.sh , which already does
the following:

1) User provides number of data_points that will be needed for a certain job
(may be .fcl file dependent — should try running GeneratePoints() and looking
at output before submitting), and number of nodes over which to split the job.
(this will be based on user discretion after running a few test points locally).
Also provides name of top directory for output.

2) Script then generates a separate job.fcl file for each job, by appending lines
that limit the PointsToRun() range for the FNEXResult being run, and then
submitting each job with the appropriate job.fcl file

3) FNEXDown.sh : takes same input as FNEXGridSubmit.sh ; checks that all jobs
have completed correctly, and if not, resubmits failed jobs.

FNEXSpectrum

FNEXExperiment_Setup

FNEXCorrectedSpectrum (was FNEXSpectrumCorrector)

FNEXExperiment (was FNEXFit)

FNEXFitter

FNEXResult

FNEXMultiExperiment :: FNEXExperiment

FNESpectrumProd_module

MakePoint()

SetupPoint(int)

AddResult(Point)

ConcatenateResults()

FNEXGridSubmit.sh

Production/Setup

Fitting

Results & Grid

FNESpectrumAna_module

Experiments/Corrections
(and overall .fcl structure)

Production/Setup

Fitting

Results & Grid

Consultants
Experiments/Corrections
(and overall .fcl structure)

Production/Setup

Fitting

Results & Grid

Development / Debugging Timeline
Assumes half-time (quarter time) [some time]

for post-docs (scientists) [consultants]

Experiments/Corrections
(and overall .fcl structure)

4-8 weeks

4-6 weeks

2 weeks (mostly tests)

4-6 weeks

Recreate Numu FA
(no systs)

1 week (allow debugging as
first major test of FNEX 3.0)

Recreate Numu/Nue FA
(ALL SYSTS)

2 weeks (allow debugging / proper
choice of FNEXFitter technique)

Thrills!

Chills!

SUNDAY!

Joint Analysis Timeline
TBD

SUNDAY!

SUNDAY!

ADDITIONAL INFO

FNESpectrumProd_module Uses _Setup to make
FNEXSpectrum objects

FNESpectrumAna_module
Uses _Setup to make

FNEXSpectrum objects

Saves them to file

Generates FNEXExperiment
objects based on .fcl file

Generates FNEXResult objects
based on .fcl file; runs them

For grid jobs, lines
appended to each job’s

.fcl file saying what
subset of points in
FNEXResult object

should be processed

